Google’s new AI training method helps small models tackle complex reasoning

by | Nov 14, 2025 | Technology

Researchers at Google Cloud and UCLA have proposed a new reinforcement learning framework that significantly improves the ability of language models to learn very challenging multi-step reasoning tasks. Supervised Reinforcement Learning (SRL) reformulates problem-solving as a sequence of logical “actions,” providing rich learning signals during the training process.This approach enables smaller models to learn complex problems that were previously out of reach for other common training techniques. Experiments show that SRL not only excels on math reasoning benchmarks but also generalizes effectively to agentic software engineering tasks.SRL is a versatile training framework that can elevate smaller and less expensive models to higher reasoning abilities.The limits of current LLM reasoning trainingRecent advances in training large language models (LLMs) for reasoning have largely been driven by reinforcement learning with verifiable rewards (RLVR), a method where a model is rewarded based on the correctness of its final answer. By repeatedly trying to solve problems and getting feedback on the final outcome, the model gradually learns effective problem-solving strategies. However, the success of this outcome-based approach depends on the model’s ability to discover a correct solution within a limited number of attempts, or “rollouts.” Since each rollout is computationally expensive, models can’t try indefinitely. This method hits a wall when problems are so difficult that the model rarely, if ever, finds the right answer within its budget.This creates a critical learning bottleneck. In many multi-step reasoning problems, a model might correctly solve several steps but get derailed by a single mistake, leading to an incorrect answer. With RLVR, this entire effort receives a negative reward, and the model learns nothing from its partially correct work. It’s an all-or-nothing approach that fails to provide granula …

Article Attribution | Read More at Article Source