Presented by T-Mobile for BusinessSmall and mid-sized businesses are adopting AI at a pace that would have seemed unrealistic even a few years ago. Smart assistants that greet customers, predictive tools that flag inventory shortages before they happen, and on-site analytics that help staff make decisions faster — these used to be features of the enterprise. Now they’re being deployed in retail storefronts, regional medical clinics, branch offices, and remote operations hubs.What’s changed is not just the AI itself, but where it runs. Increasingly, AI workloads are being pushed out of centralized data centers and into the real world — into the places where employees work and customers interact. This shift to the edge promises faster insights and more resilient operations, but it also transforms the demands placed on the network. Edge sites need consistent bandwidth, real-time data pathways, and the ability to process information locally rather than relying on the cloud for every decision.The catch is that as companies race to connect these locations, security often lags behind. A store may adopt AI-enabled cameras or sensors long before it has the policies to manage them. A clinic may roll out mobile diagnostic devices without fully segmenting their traffic. A warehouse may rely on a mix of Wi-Fi, wired, and cellular connections that weren’t designed to support AI-driven operations. When connectivity scales faster than security, it creates cracks — unmonitored devices, inconsistent access controls, and unsegmented data flows that make it hard to see what’s happening, let alone …