Gen AI in software engineering has moved well beyond autocomplete. The emerging frontier is agentic coding: AI systems capable of planning changes, executing them across multiple steps and iterating based on feedback. Yet despite the excitement around “AI agents that code,” most enterprise deployments underperform. The limiting factor is no longer the model. It’s context: The structure, history and intent surrounding the code being changed. In other words, enterprises are now facing a systems design problem: They have not yet engineered the environment these agents operate in.The shift from assistance to agencyThe past year has seen a rapid evolution from assistive coding tools to agentic workflows. Research has begun to formalize what agentic behavior means in practice: The ability to reason across design, testing, execution and validation rather than generate isolated snippets. Work such as dynamic action re-sampling shows that allowing agents to branch, reconsider and revise their own decisions significantly improves outcomes in large, interdependent codebases. At the platform level, providers like GitHub are now building dedicated agent orchestration environments, such as Copilot Agent and Agent HQ, to support multi-agent collaboration inside real enterprise pipelines.But early field results tell a cautionary story. When organizations introduce agentic tools without addressing workflow and environment, productivity can decline. A randomized control study this year showed that developers who used AI assistance in unchanged workflows completed tasks more slowly, largely due to verification, rework and confusion around intent. The lesson is straightforward: Autonomy without orchestration rarely yields efficiency.Why context engineering is the real unlockIn every unsuccessful deployment I’ve observed, the failure stemmed from context. When agents lack a structured understanding of a codebase, specifically its relevant modules, dependency graph, test harness, architectural conventions and change history. They often generate output that appears correct but is disconnected from reality. Too much inform …